Proof of Verlinde's formula:
Consider the situation of performing surgery on $S^{2} \times S^{1}$ with two Wilson lines:

$$
Z\left(S_{i}^{3} L\left(R_{\mu}, R_{\lambda}\right)\right)=\sum_{2} S_{\mu}^{2} \underbrace{Z\left(S_{\times}^{2} S_{i}^{1} R_{\nu} R_{\lambda}\right)}_{=\delta_{2 \lambda}}=S_{\mu \lambda}
$$

Letting. 3 Wilson lines pass through S^{2}, we get after surgery S^{3} with link

This time we get

$$
\begin{align*}
Z\left(S_{i}^{3} L\left(R_{\delta}, R_{m}, R_{\lambda}\right)\right) & =\sum_{\nu} S_{\delta}^{2} Z\left(S^{2} \times S^{\prime} ; R_{2}, R_{m}, R_{\lambda}\right) \\
& =\sum_{2} S_{\delta}^{2} N_{\nu \mu \lambda} \quad(*) \tag{*}
\end{align*}
$$

Using factorization,

we have

$$
\begin{aligned}
& Z\left(S^{3}, L\left(R_{s}, R_{\mu}, R_{\lambda}\right)\right) \cdot Z\left(S_{;}^{3} R_{8}\right) \\
& =Z\left(S_{;}^{3} L\left(R_{s}, R_{\mu}\right)\right) \cdot Z\left(S_{;}^{3} L\left(R_{\delta}, R_{\lambda}\right)\right) \\
\rightarrow & Z\left(S_{;}^{3} L\left(R_{\delta}, R_{m}, R_{\lambda}\right)\right)=S_{8 m} S_{8 \lambda} / S_{0,8}
\end{aligned}
$$

Combining with (x), we finally get

$$
\frac{S_{\delta \mu} S_{\delta \lambda}}{S_{\sigma \delta}}=\sum_{2} S_{\delta}^{\nu} N_{\nu \mu \lambda}
$$

Projective representations of mapping class groups
Let us summarize in a systematic way what we have learned.
A topological quantum field theory (TQFT) in $d+1$ dimensions is a functor Z satisfying the following conditions:

1. Σd-dim mfd.,$\partial \Sigma=\phi$
\longrightarrow finite-dim. comply. vector space

$$
F_{\Sigma}
$$

2. $Y(d+1)$-dim mfd., $\partial Y=\Sigma$
\longrightarrow a vector $Z(Y) \in \mathcal{C}_{\Sigma}$
Z has to satisfy the following properties:
AI) - \sum orientation reversed \sum

$$
\left.\rightarrow \lambda t_{-\Sigma}=\right) t_{\Sigma}^{*} \quad\left(\text { dual of } 7 t_{\Sigma}\right)
$$

A2) Far a disjoint union $\sum_{1} \cup \sum_{2}$ we have

$$
H_{\Sigma_{1} \cup \Sigma_{2}}=H_{\Sigma_{1}} \otimes \mathcal{E}_{2}
$$

$\left.A_{1}\right)+A_{2}$) imply:
$(d+1)$-mfd y with $\partial Y=\left(-\Sigma_{1}\right) \cup \Sigma_{2}$

$$
\rightarrow Z(y) \in \operatorname{Hom}_{\mathbb{c}}\left(H_{\Sigma_{1}}, H_{\Sigma_{2}}\right)
$$

"cobordism" between Σ_{1} and Σ_{2}
A3) Composition of cobordisms $\partial Y_{1}=\left(-\Sigma_{1}\right) \cup \Sigma_{2}$ and $\partial Y_{2}=\left(-\Sigma_{2}\right) \cup \Sigma_{3}$

$$
\rightarrow Z\left(Y_{1} \cup Y_{2}\right)=Z\left(Y_{2}\right) \circ Z\left(Y_{1}\right)
$$

A4) For an empty set \varnothing we have $Z(\phi)=\mathbb{C}$.
A5) For the closed unit interval I, $Z(\Sigma \times I)$ is the identity map on \mathcal{H}_{Σ}.
Let ε denote the category with

- objects: compact oriented smooth mods. without boundary
- morphisms: cobordisms
$\rightarrow Z$ is a functor between \mathcal{C} and the
linear category with objects finite-dim. complex vector spaces and mouphisms linear maps.
Define:

$$
\begin{aligned}
\operatorname{Diff}^{+}(\Sigma) \cong & \text { orientation preserving } \\
& \text { diffeomorphisms of } \Sigma
\end{aligned}
$$

$\xrightarrow{A 3-A 5} \operatorname{Diff}^{+}(\Sigma)$ acts linearly on $7 t_{\Sigma}$.

$$
\rightarrow \quad \text { if } \partial y=\varnothing \rightarrow z(y) \in \mathbb{C}
$$

in particular: $Z(Y)=\left\langle Z\left(Y_{+}\right), Z\left(Y_{-}\right)\right\rangle$ where $Y=Y+U Y_{-}, \partial Y_{+}=\Sigma=-\partial Y_{-}$

$$
z\left(y_{+}\right) \in H_{\Sigma}, z\left(y_{-}\right) \in-_{\Sigma}^{*}
$$

By A3 $Z(Y)$ is independent of a decomposition of Y.
For $f \in \operatorname{Diff}^{+}(\Sigma)$ define Σ_{f}

For the case where $f=i d$:

$$
\operatorname{dim} H_{\Sigma}=Z\left(\Sigma \times s^{\prime}\right)
$$

Now let \sum be a closed oriented surface of genus g :

Introduce equivalence rel an $\operatorname{Diff}^{+}(\Sigma)$:

$$
h \sim h^{\prime}: h \text { and } h^{\prime} \in \operatorname{Diff}^{+}(\Sigma)
$$ are isotopic

$\rightarrow \operatorname{Diff}^{+}(\Sigma) / \sim$ forms a group
"mapping class group" M_{g}.
In the case of $g=0$ and n marked points $\rightarrow M_{0, n}$ gives the braid group want to generalize to higher g.
Cut out \sum by $C_{1}, \ldots, C_{g} \rightarrow 2$-sphere with ag boundary comp.
\rightarrow consider space of conformal blocks of Riemann sphere with $2 g$ marked points $p_{1}, p_{2}, \cdots, p_{2 g-1}, p_{2 g}$
consider of $=s l_{2}(\mathbb{C})$ with fixed $k \in \mathbb{Z}_{+}$.
\rightarrow associate level K highest weights $\mu_{1}, \mu_{1}^{*}, \cdots, \mu_{g}, \mu_{g}{ }^{*}$ (λ is h.w. rep. of $\left.H_{\lambda}\right)$ (and H_{0} to the origin, H_{0}^{*} to ∞)

$$
\begin{gathered}
C H \operatorname{Hom} \alpha g\left(V_{\mu_{1}} \otimes V_{\mu_{1}}^{*} \otimes \cdots \otimes V_{\mu g} \otimes V_{\mu g}^{*}, \mathbb{C}\right) \\
!! \\
V_{\mu_{1}} \mu_{1}^{*}-\cdots \mu_{g} \mu_{g}
\end{gathered}
$$

set $V_{\Sigma}=\bigoplus_{\mu_{1}, \mu_{1}^{*}, \ldots, \mu_{g}, \mu_{g}^{*} \in P_{f}(k)} V_{\mu_{1}}, \ldots \mu_{g} \mu_{g}^{*}$
\rightarrow admissible labelings for

Le moa 3 :

$$
\operatorname{dim} V_{2}=\sum_{\lambda \in P_{+}(k)}\left(\frac{1}{S_{0 x}}\right)^{2 g-2}
$$

Proof: Follows from Prop. 7. \&6.

